Hidden Markov Models and POS Tagging

Natalie Parde

UIC CS 421

In general: assigning labels to individual tokens or spans of tokens given a longer string of input

Sequence Modeling and
 Sequence Labeling

Sequence Labeling

- Objective: Find the label for the next item, based on the labels of other items in the sequence.

Why perform sequence labeling?

- In document-level text classification, models assume that the individual datapoints being classified are disconnected and independent
- Many NLP problems do not satisfy this assumption! Instead, they involve
- Interconnected decisions
- Each of which are mutually dependent
- Each of which resolve different ambiguities

Example Sequence Labeling Applications

- Named entity recognition
- Semantic role labeling

person

Natalie Parde works at the University of Illinois at Chicago and lives in Chicago, Illinois.
location
agent source destination
Natalie drove for 15 hours from Dallas to Chicago in her hail-damaged Honda Accord.
instrument

This Week's Topics

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward Algorithm

Thursday
Tuesday

Parts of Speech
POS Tagsets
POS Tagging

This Week's Topics

Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

Thursday

Tuesday

Parts of Speech
POS Tagsets
POS Tagging

Probabilistic Sequence Models

- We can perform multiple, interdependent classifications to address a greater problem using probabilistic sequence models
- These models can be neural networks, but they can also be lighter-weight alternatives closer to finite state automata known as hidden Markov models
- Hidden Markov models are probabilistic generative models for sequences that make predictions based on an underlying set of hidden states

What are Markov Models?

- Finite state automata with probabilistic state transitions
- Markov Property: The future is independent of the past, given the present.
- In other words, the next state only depends on the current state ...it is independent of previous history.
- Also referred to as Markov Chains

Sample Markov Model

Sample Markov Model

Hidden Markov Models

- Markov models that assume an underlying set of hidden (unobserved) states in which the model can be
- Assume probabilistic transitions between states over time
- Assume probabilistic generation of items (e.g., tokens) from states

Formal Definition

- A Hidden Markov Model can be specified by enumerating the following properties:
- The set of states, Q
- A sequence of observation likelihoods, B, also called emission probabilities, each expressing the probability of an observation being generated from a state i
- A start state, q_{0}, and final state, q_{F}, that are not associated with observations

Sample Hidden Markov Model

Formal Definition

- A Hidden Markov Model can be specified by enumerating the following properties:
- The set of states, \mathbf{Q}
- A sequence of observation likelihoods, B, also called emission probabilities, each expressing the probability of an observation o_{t} being generated from a state i
- A start state, q_{0}, and final state, q_{F}, that are not associated with observations, together with transition probabilities out of q_{0} and into q_{F}
- A transition probability matrix, A, where each $a_{i j}$ represents the probability of moving from state i to state j, such that $\sum_{j=1}^{n} a_{i j}=1 \forall i$
- A sequence of T observations, O, each drawn from a vocabulary $V=v_{1}, v_{2}, \ldots$, v_{V}

Sample Hidden Markov Model

Corresponding Transition Matrix

HMMs can also be used for probabilistic text generation!

- More generally, you can use an HMM to generate a sequence of T observations: O $=O_{1}, O_{2}, \ldots, O_{T}$

Begin in the start state
For t in $[0, \ldots, T]$:
Randomly select a new state based on the transition distribution for the current state
Randomly select an observation from the new state based on the observation distribution for that state

Sample Text Generation

Three Fundamental HMM Problems

- Observation Likelihood: How likely is a particular observation sequence to occur?
- Decoding: What is the best sequence of hidden states for an observed sequence?
-What is the best sequence of labels for our test data?
- Learning: What are the transition probabilities and observation likelihoods that best fit the observation sequence and HMM states?
- How do we empirically fit our training data?

This Week's Topics

Observation Likelihood

- Given a sequence of observations and an HMM, what is the probability that this sequence was generated by the model?
- Useful for two tasks:
- Sequence classification
- Selecting the most likely sequence

Sequence Classification

- Assuming an HMM is available for every possible class, what is the most likely class for a given observation sequence?
- Which HMM is most likely to have generated the sequence?

Most Likely Sequence

- Of two or more possible sequences, which one was most likely generated by a given HMM?

How can we compute the observation likelihood?

- Naïve Solution:
- Consider all possible state sequences, Q, of length T that the model, λ, could have traversed in generating the given observation sequence, O
- Compute the probability of a given state sequence from A, and multiply it by the probability of generating the given observation sequence for that state sequence
- $P(O, Q \mid \lambda)=P(O \mid Q, \lambda){ }^{*} P(Q \mid \lambda)$
- Repeat for all possible state sequences, and sum over all to $\operatorname{get} P(O \mid \lambda)$
- But, this is computationally complex!
- $\mathrm{O}\left(T N^{T}\right)$

How can we compute the observation likelihood?

- Efficient Solution:
- Forward Algorithm: Dynamic programming algorithm that computes the observation probability by summing over the probabilities of all possible hidden state paths that could generate the observation sequence.
- Implicitly folds each of these paths into a single forward trellis
- Why does this work?
- Markov assumption (the probability of being in any state at a given time t only relies on the probability of being in each possible state at time $t-1$)
- Works in $\mathrm{O}\left(\mathrm{TN}^{2}\right)$ time!

How does the forward algorithm work?

- Let $\alpha_{i}(j)$ be the probability of being in state j after seeing the first t observations, given your HMM λ
- $\alpha_{i}(j)$ is computed by summing over the probabilities of every path that could lead you to this cell
- $\alpha_{i}(j)=P\left(o_{1}, o_{2} \ldots o_{t}, q_{t}=j \mid \lambda\right)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$
- $\alpha_{t-1}(i)$: The previous forward path probability from the previous time step
- $a_{i j}$: The transition probability from previous state q_{i} to current state q_{j}
- $b_{j}\left(o_{t}\right)$: The state observation likelihood of the observed item o_{t} given the current state j

Formal Algorithm

create a probability matrix forward[N+2,T]
for each state q in $[1, \ldots, N]$ do:
forward $[\mathrm{q}, 1] \leftarrow \mathrm{a}_{0, \mathrm{q}} * \mathrm{~b}_{\mathrm{q}}\left(\mathrm{o}_{1}\right)$
for each time step t from 2 to T do:
for each state q in $[1, \ldots, N]$ do:

$$
\text { forward }[q, t] \leftarrow \sum_{q^{\prime}=1}^{N} \text { forward }\left[q^{\prime}, t-1\right] * a_{q^{\prime}, q} * b_{q}\left(o_{t}\right)
$$

forwardprob $\leftarrow \sum_{q=1}^{N}$ forward $[q, T]$

Sample Problem

- You're trying to solve a problem that relies on you knowing which days it was hot and cold in Chicago during the summer of 1923
- Unfortunately, you have no official records of the weather in Chicago for that summer, although you're trying to model some key weather patterns from that year using an HMM
- You do have one promising lead: You find a detailed diary tracking how many ice cream cones the author of that diary ate on each day
- You decide to focus on a three-day sequence:
- Day 1: 3 ice cream cones
- Day 2: 1 ice cream cone
- Day 3: 3 ice cream cones
- Your first task is to determine whether this HMM does a good job at modeling your sequence

Your HMM

Forward Trellis

- Incorporates all the information you'll need to implement the forward algorithm
- Observations
- Transition probabilities
- State observation likelihoods
- Forward probabilities from earlier observations

Forward Step

Forward Trellis

We've so far tackled one of the fundamental HMM tasks.

- What is the probability that a sequence of observations fits a given HMM?
- Calculate using forward probabilities!
- However, there are still two remaining tasks to explore....

This Week's Topics

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward Algorithm

Thursday
Tuesday

Parts of Speech
POS Tagsets
POS Tagging

Decoding

- Given an observation sequence and an HMM, what is the best hidden state sequence?
- How do we choose a state sequence that is optimal in some sense (e.g., best explains the observations)?
- Very useful for sequence labeling!

Decoding

- Naïve Approach:
- For each hidden state sequence Q, compute $P(O \mid Q)$
- Pick the sequence with the highest probability
- However, this is computationally inefficient!
- $\mathrm{O}\left(\mathrm{N}^{\top}\right)$

How can we decode sequences more efficiently?

- Viterbi Algorithm
- Another dynamic programming algorithm
- Uses a similar trellis to the Forward algorithm
- Viterbi time complexity: $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~T}\right)$

Viterbi Intuition

- Goal: Compute the joint probability of the observation sequence together with the best state sequence
- So, recursively compute the probability of the most likely subsequence of states that accounts for the first t observations and ends in state q_{j}.

$$
\text { - } v_{t}(j)=\max _{q_{0}, q_{1}, \ldots, q_{t-1}} P\left(q_{0}, q_{1}, \ldots, q_{t-1}, o_{1}, \ldots, o_{t}, q_{t}=q_{j} \mid \lambda\right)
$$

- Also record backpointers that subsequently allow you to backtrace the most probable state sequence
- $b t_{t}(j)$ stores the state at time $t-1$ that maximizes the probability that the system was in state q_{j} at time t, given the observed sequence

Formal Algorithm

```
create a path probability matrix Viterbi[N+2,T]
for each state q in [1,\ldots,N] do:
    Viterbi[q,1] \leftarrow a (q,q * bqu(or)
    backpointer[q,1] \leftarrow0
for each time step t in [2,..,T] do:
    for each state q in [1,..,N] do:
        viterbi[q,t]\leftarrow}\mp@subsup{\operatorname{max}}{\mp@subsup{q}{}{\prime}\in[1,\ldots,N]}{}\mathrm{ viterbi [q',t-1]* a}\mp@subsup{q}{\mp@subsup{q}{}{\prime},q}{}*\mp@subsup{b}{q}{}(\mp@subsup{o}{t}{}
        backpointer }[q,t]\leftarrow\underset{\mp@subsup{q}{}{\prime}\in[1, argmax viterbi[\mp@subsup{q}{}{\prime},t - 1]* a aq\mp@subsup{q}{}{\prime},q}{}*\mp@subsup{b}{q}{}(\mp@subsup{o}{t}{}
        q
bestpathprob }\leftarrow\mp@subsup{\operatorname{max}}{\mp@subsup{q}{}{\prime}\in[1,..,N]}{viterbi[\mp@subsup{q}{}{\prime},T]
bestpathpointer }\leftarrow\operatorname{argmax viterbi[ [ ',T]
                        q
```


Seem familiar?

- Viterbi is basically the forward algorithm + backpointers!
- Instead of summing across prior forward probabilities, we use a max function

Viterbi Trellis

Viterbi Backtrace

Viterbi Backtrace

Viterbi Backtrace

Viterbi Backtrace

The Viterbi algorithm is used in many domains, even beyond text processing!

- Speech recognition
- Given an input acoustic signal, find the most likely sequence of words or phonemes
- Digital error correction
- Given a received, potentially noisy signal, determine the most likely transmitted message
- Computer vision
- Given noisy measurements in video sequences, estimate the most likely trajectory of an object over time
- Economics
- Given historical data, predict financial market states at certain timepoints

This Week's Topics

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

Thursday
Tuesday

Parts of Speech
POS Tagsets
POS Tagging

Finally ...how do we train HMMs?

- If we have a set of observations, can we learn the parameters (transition probabilities and observation likelihoods) directly?

| | 1 | 3 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 3 |
| 3 | 3 | 3 |
| 3 | 2 | 2 |
| 1 | 1 | 2 |

Forward-Backward Algorithm

- Special case of expectation-maximization (EM) algorithm
- Input:
- Unlabeled sequence of observations, O
- Vocabulary of hidden states, Q
- Output: Transition probabilities and observation likelihoods

How does the algorithm compute these outputs?

- Start with base estimates for a_{ij} and b_{j}, and iteratively improve those estimates
- Get estimated probabilities by:
- Computing the forward probability for an observation
- Dividing that probability mass among all the different paths that contributed to this forward probability (backward probability)

Backward Algorithm

- We define the backward probability as follows:
- $\beta_{t}(i)=P\left(o_{t+1}, o_{t+2}, \ldots, o_{T} \mid q_{t}=i, \lambda\right)$
- Probability of generating partial observations from time $t+1$ until the end of the sequence, given that the HMM λ is in state i at time t
- Also computed using a trellis, but moves backwards instead

Backward Step

For the expectation step of the forward-backward algorithm, we re-estimate transition probabilities and observation likelihoods.

- We re-estimate transition probabilities, $a_{i j}$, as follows:
- Let $\zeta_{t}(i, j)=\frac{a_{t}(i) a_{a i i} b_{j} \beta_{t+1}(j)}{a_{T}\left(q_{F}\right)}$
- Then, $\widehat{a_{i j}}=\frac{\text { expected \# transitions from state } i \text { to state } j}{\text { expected \# transitions from state } i}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_{t}(i, j)}$
- Check out the course textbook (Appendix A) for an in-depth discussion of how the numerator and denominator above are derived!

Re-Estimating Observation Likelihood

- We re-estimate b_{j} as follows:
- Let $\gamma_{t}(j)=\frac{a_{t}(j) \beta_{t}(j)}{a_{T}\left(q_{F}\right)}$
- Then, $\widehat{b}_{j}\left(v_{k}\right)=\frac{\text { expected \# of times in state } j \text { and observing symbol } v_{k}}{\text { expected number of times in state } j}=\frac{\sum_{t=1}^{T} \text { s.t. } o_{t}=v_{k} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$

Putting it all together, we have the forward-backward algorithm!

initialize A and B iterate until convergence:

```
# Expectation Step
compute }\mp@subsup{\gamma}{t}{}(j)\mathrm{ for all t and j
compute }\mp@subsup{\zeta}{t}{}(i,j)\mathrm{ for all t, i, and j
# Maximization Step
\alphaij}=\widehat{\mp@subsup{a}{ij}{\prime}}\mathrm{ for all i and j
bj}(\mp@subsup{v}{k}{})=\widehat{\mp@subsup{b}{j}{\prime}}(\mp@subsup{v}{k}{})\mathrm{ for all j, and all v}\mp@subsup{v}{k}{}\mathrm{ in the output vocab V
```


Summary: Hidden Markov Models

- HMMs are probabilistic generative models for sequences
- They make predictions based on underlying hidden states
- Three fundamental HMM problems include:
- Computing the likelihood of a sequence of observations
- Determining the best sequence of hidden states for an observed sequence
- Learning HMM parameters given an observation sequence and a set of hidden states
- Observation likelihood can be computed using the forward algorithm
- Sequences of hidden states can be decoded using the Viterbi algorithm
- HMM parameters can be learned using the forwardbackward algorithm

This Week's Topics

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward Algorithm

Thursday
Tuesday

Parts of Speech
POS Tagsets
POS Tagging

What are parts of speech?

- Traditional (broad) categories:
- noun
- verb
- adjective
- adverb
- preposition
- article
- interjection
- pronoun
- conjunction
- Sometimes also referred to as lexical categories, word classes, or morphological classes

Parts of Speech

Noun	Verb
- People,	- Actions or
places, or	states
things	Eat, sleep,
- Doctor,	be...
mountain,	
cellphone....	

Adjective

- Descriptive attributes
- Purple, triangular, windy....

Adverb

- Modifies other words by answering how, in what way, when, where, and to what extent questions
- Gently, quite, quickly....

Parts of Speech

What is part-ofspeech (POS) tagging?

The process of automatically assigning grammatical word classes to individual tokens in text.

- First step of many pipelined NLP tasks:

Why is POS tagging useful?

- Speech synthesis
- Constituency parsing
- Dependency parsing
- Information extraction
- And many more!

POS Tag Categories

Each POS type falls into one of two larger classes:

- Open
- Closed

Open class:

- New members can be created at any time
- In English:
- Nouns, verbs, adjectives, and adverbs
- Many (but not all!) languages have these four classes

Closed class:

- A small, fixed membership ...new members cannot be created spontaneously
- Usually function words
- In English:
- Prepositions and auxiliaries (may, can, been, etc.)

Finer-Grained POS Classes

- Broader POS classes often have smaller subclasses
- Noun:
- Proper (Illinois)
- Common (state)
- Verb:
- Main (tweet)
- Modal (had)
- Some subclasses of a part of speech might be open, while others are closed

POS Tagging

- Can be very challenging!
- Words often have more than one valid part of speech tag
- Today's faculty meeting went really well! = adverb
- Do you think the undergrads are well? = adjective
- Well, did you see the latest response to your email? = interjection
- Jurafsky and Martin's book is a well of information. = noun
- Laughter began to well up inside her at, as always, a highly inconvenient time. = verb
verb determiner

Give me a break!
pronoun noun

POS Tagging

- Goal: Determine the best POS tag for a particular instance of a word.

Did the window break?
determiner verb

This Week's Topics

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward Algorithm

Thursday
Tuesday

POS Tagsets

In order to determine which POS tag to assign to a word, we first need to decide which tagset we will use

Tagset: A finite set of POS tags, where each tag defines a distinct grammatical role

Can range from very coarse to very fine

Penn Treebank Tagset

- Most common POS tagset
- 36 POS tags +12 other tags (punctuation and currency)
- Used when developing the Penn Treebank, a corpus created at the University of Pennsylvania containing more than 4.5 million words of American English
- Link to documentation: https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html

Penn Treebank Tagset

CC	Coordinating Conjunction	NNS	Noun, plural	TO	to
CD	Cardinal Number	NNP	Proper noun, singular	UH	Interjection
DT	Determiner	NNPS	Proper noun, plural	VB	Verb, base form
EX	Existential there	PDT	Predeterminer	VBD	Verb, past tense
FW	Foreign word	POS	Possessive ending	VBG	Verb, gerund or present participle
IN	Preposition or subordinating conjunction	PRP	Personal pronoun	VBN	Verb, past participle
JJ	Adjective	PRP\$	Possessive pronoun	VBP	Verb, non-3rd person singular present
JJR	Adjective, comparative	RB	Adverb	VBZ	Verb, 3rd person singular present
JJS	Adjective, superlative	RBR	Adverb, comparative	WDT	Wh-determiner
LS	List item marker	RBS	Adverb, superlative	WP	Wh-pronoun
MD	Modal	RP	Particle	WP\$	Possessive wh-pronoun
NN	Noun, singular or mass	SYM	Symbol	WRB	Wh-adverb

What do some of these distinctions mean?

What do some of these distinctions mean?

CC	Coordinating Conjunction	NNS	Noun, plural	d	to
CD	Cardinal Number	NNP	$\mathrm{Pr} \mathrm{Pa}^{\text {loun, singular }}$	UF,	Interjection
DT	Determiner	NNPS	Propurioun, piural	VB	Verb, base form
EX	Existential there	PDT	Predeterminer	VBD	Verb, past tense
FW	Foreign word	POS	$\mathrm{Pc} \xrightarrow{\text { eating enaing }}$	VBG	Verb, gerund or present participle
IN	Preposition or subordinating conjunction	PRP		VBN	Verb, past participle
JJ	Adjective	PRP\$	Possessive pronoun	VBP	Verb, non-3 ${ }^{\text {rd }}$ person singular present
JJR	Adjective, comparative	RB	Adverb eat	VBZ	Verb, $3^{\text {rd }}$ person singular present
should JS	Adjective, superlative	RBR	Ad ats mparative	WDT	Wh-determiner
LS	List item marker	RBS	Advers, ulperlative	WP	Wh-pronoun
\checkmark MD	Modal	RP	Particle	WP\$	Possessive wh-pronoun
NN	Noun, singular or mass	SYM	Symbol	WRB	Wh-adverb

What do some of these distinctions mean?

CC	Coordinating Conjunction	NNS	Noun, plural	TO	to
CD	Cardinal Number	NNP	Proper noun, singular	UH	Interjection
DT	Determiner	NNPS	Proper noun, plural	VB	Verb, base form
EX	Existential there	PDT	Predeterminer	VBD	Verb, past tense
F W	oreign word	POS	Possessive ending	VBG	Verb, gerund or present participle
IN	Preposition or subordinating conjunction	PRP	Personal pronoun	VBN	Verb, past participle
JJ	Adjective	PRP\$	Possessive pronoun	VBP	Verb, non-3 ${ }^{\text {rd }}$ person singular present
JJR	Adjective, comparative	RB ${ }^{\text {W }}$	Adverb	VBZ	Verb, $3^{\text {rd }}$ person singular present
JJS	Adjective, superlative	RBR	Adverb, comparative	WDT	Wh-determiner
L;	List item marker	RBS	Adverb, superlative	WP	Wh-pronoun
	N	RP	Particle	WP\$	Possessive wh-pronoun
NN	Nour, oniyurar or mass	SYM	Symbol	WRB	Wh-adverb

What do some of these distinctions mean?

CC	Coordinating Conjunction	NNS	Noun, plural	TO	to
CD	Cardinal Number	NNP	Proper noun, singular	UH	Interjection
DT	Determiner	NNPS	Proper noun, plural	VB	Verb, base form
EX	Existential there	PDT	Predeterminer	VBD	Verb, past tense
FW	Foreign word	POS	Possessive ending	VBG	Verb, gerund or present participle
IN	Preposition or subordinating conjunction	calmly	Personal pronoun	VBN	Verb, past participle
JJ	Adjective	PRP\$	Possessive pronoun	VBP	Verb, non-3 ${ }^{\text {rd }}$ person singular present
JJR	Adjective, comparative	RB	Adverb	VBZ	Verb, $3^{\text {rd }}$ person singular present
JJS	Adjective, calmer $\mathrm{e} \longrightarrow$	RBR	Adverb, comparative	WDT	Wh-determiner
LS	List item marker \longrightarrow	RBS	Adverb, superlative	WP	Wh-pronoun
MD	Modal	RP	Particle	WP\$	Possessive wh-pronoun
NN	Noun, singul calmest	SYM	Symbol	WRB	Wh-adverb

As a general (but not perfect!) rule....

CC	Coordinating Conjunction	NNS	Noun, plural	TO	to
CD	Cardinal Number	NNP	Proper noun, singular	UH	Interjection
DT	Determiner	NNPS	Proper noun, plural	VB	Verb, base form
EX	Existential there	PDT	Predeterminer	VBD	Verh past tense
FW	Foreign word	POS	Possessive ending	VBG	Ve paresent
IN	Preposition or subordinating conjunction	PRP	Personal pronoun	VBN	Verb, past participIe
JJ	Adjective	PRP\$	Possessive pronoun	VBP	Verb, non-3rd person singular present
JJR	Adjective, comparative	RB	Adverb	VBZ	Verb, 3rd person singular present
JJS	Adjective, superlative	RBR	Adverb, comparative	WDT	Wh-determiner
LS	List item marker	RBS	Adverb, superlative	WP	Wh-pronoun
MD	Modal	RP	Particle	WP\$	Possessive wh-pronoun
NN	Noun, singular or mass	SYM	Symbol	WRB	Wh-adverb

As a general (but not perfect!) rule....

CC	Coordinating Conjunction	NNS	Noun, plural	TO	to
CD	Cardinal Number	NNP	Proper noun, singular	UH	Interjection
DT	Determiner	NNPS	Proper noun, plural	VB	Verb, base form
EX	Existential there	PDT	Predeterminer	VBD	Verb, past tense
FW	Foreign word	Possessivo	VBG	Verb, gerund or present participle	
IN	Preposition or subordinating conjunction	PRP		Pen	VB

Other Popular POS Tagsets

This Week's Topics

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward Algorithm

Thursday
Tuesday

Parts of Speech
POS Tagsets
POS Tagging

So ...how can we assign POS tags?

So ...how can we assign POS tags?

Time	flies	like	an	arrow;	fruit	flies	like	a	banana

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN									

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN NBZ									

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN	VBZ	IN							

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN	VBZ	IN	DT						

CC	Coordinating Conjunction	NNS	Noun, plural	TO	to
$C D$	Cardinal Number	NNP	Proper noun, singular	UH	Interjection
DT	Determiner	NNPS	Proper noun, plural	VB	Verb, base form
EX	Existential there	PDT	Predeterminer	VBD	Verb, past tense
FW	Foreign word	POS	Possessive ending	VBG	Verb, gerund or present participle
IN	Preposition or subordinating conjunction	PRP	Personal pronoun	VBN	Verb, past participle
JJ	Adjective	PRP\$	Possessive pronoun	VBP	Verb, non-3 ${ }^{\text {rd }}$ person singular present
JJR	Adjective, comparative	RB	Adverb	VBZ	Verb, $3^{\text {rd }}$ person singular present
JJS	Adjective, superlative	RBR	Adverb, comparative	WDT	Wh-determiner
LS	List item marker	RBS	Adverb, superlative	WP	Wh-pronoun
MD	Modal	RP	Particle	WP\$	Possessive wh-pronoun
NN	Noun, singular or mass	SYM	Symbol	WRB	Wh-adverb

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN	VBZ	IN	DT	NN	NN				

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN	VBZ	IN	DT	NN	NN	NNS			

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN	VBZ	IN	DT	NN	NN	NNS	VBZ		

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN	VBZ	IN	DT	NN	NN	NNS	VBZDT		

So ...how can we assign POS tags?

Time	flies	like	an	arrow	fruit	flies	like	a	banana
NN	VBZ	IN	DT	NN	NN	NNS	$V B Z D T$	NN	

Ambiguity is a big issue for POS taggers!

- Many words have multiple senses
- time = noun, verb
- flies = noun, verb
- like = verb, preposition

Just how ambiguous is natural language?

- Brown Corpus: Approximately 11\% of word types have multiple valid part of speech labels
- These tend to be very common words!
- We think that the meeting will only last two more hours. = IN
- Was that the $32{ }^{\text {nd }}$ Piazza post today? = DT
- You can't eat that many donuts every time the clock strikes midnight! = RB
- Overall, $\sim 40 \%$ of word tokens are instances of ambiguous word types

Despite

 this, modern POS taggers still work quite well.- Accuracy > 97\%
- Even a simple baseline can achieve ~90\% accuracy
- Tag every word with its most frequent tag
- Tag unknown words as nouns
- Numerous ways to predict POS tags:
- Rule-based
- Statistical
- HMMs
- Neural sequence modeling

Rule-Based POS Tagging

35 Start with a dictionary, and assign all relevant tags to the words in that dictionary

Manually design rules to selectively remove invalid tags for test instances in context

Keep the remaining correct tag for each word

Example Rule-
 Based Approach

- Start with a dictionary that specifies permissible tags for our small vocabulary:
- she
- PRP
- promised
- VBN, VBD
- to
- TO
- back
- VB, JJ, RB, NN
- the
- DT
- bill
- NN, VB

Example Rule-Based Approach

she	promised	to	back	the	bill
PRP	VBN	TO	VB	DT	NN
	VBD		JJ		VB
		RB			
			NN		

Example Rule-Based Approach

Eliminate VBN if VBD is an option when VBN|VBD follows "<start> PRP"

she	promised	to	back	the	bill
PRP	/LN	TO	VB	DT	NN
	VBD		JJ		VB
		RB			
			NN		

Example Rule-Based Approach

she	promised	to	back	the	bill
PRP	(12)	TO	VB	DT	NN
	VBD		NiN		NB
			NB		
			(N)		

Rule-based POS taggers are an adequate baseline, but.

- Like all rule-based methods, they carry important disadvantages:
- Time-consuming to build
- Difficult to update or generalize to new domains
- Might miss important patterns latent in the specified text domain

Nice alternative to rulebased POS tagging?

- Statistical POS Tagging: POS taggers that make decisions based on learned knowledge of POS tag distribution in a training corpus
- the is usually tagged as DT
- Words with uppercase letters are more likely to be tagged NNP or NNPS
- Words starting with the prefix un- may be tagged JJ
- Words ending with the suffix -ly may be tagged RB

Simple Statistical POS Tagger

- Using a training corpus, determine the most frequent tag for each word
- Assign POS tags to new words based on those frequencies
- Assign NN to new words for which there is no information from the training corpus

I saw a wampimuk at the zoo yesterday!

Simple Statistical POS Tagger

- Using a training corpus, determine the most frequent tag for each word
- Assign POS tags to new words based on those frequencies
- Assign NN to new words for which there is no information from the training corpus

Simple Statistical POS Tagger

- Using a training corpus, determine the most frequent tag for each word
- Assign POS tags to new words based on those frequencies
- Assign NN to new words for which there is no information from the training corpus

- This approach works reasonably well
- Approximately 90% accuracy
- However, we can do much better!
- One way to improve upon our results is to use HMMs

Simple Statistical POS Tagger

Bigram HMM POS Tagger

- To determine the tag t_{i} for a single word w_{i} :
- $t_{i}=\underset{t_{j} \in\left\{t_{0}, t_{1}, \ldots, t_{t-1}\right\}}{\operatorname{argmax}} P\left(t_{j} \mid t_{i-1}\right) P\left(w_{i} \mid t_{j}\right)$
- This means we need to be able to compute two probabilities:
- The probability that the tag is t_{j} given that the previous tag is t_{i-1}
- $P\left(t_{j} \mid t_{i-1}\right)$
- The probability that the word is w_{i} given that the tag is t_{j}
- $P\left(w_{i} \mid t_{j}\right)$
- We can compute both of these from corpora like the Penn Treebank or the Brown Corpus
- Then, we can find the most optimal sequence of tags using the Viterbi algorithm!

- Given two possible sequences of tags from the Brown Corpus tagset for the following sentence, what is the best way to tag the word "fly"?

Example: Bigram HMM Tagger

Example: Bigram HMM Tagger

- Since we're creating a bigram HMM tagger and focusing on the word "fly," we only need to be concerned with the subsequence "to fly tomorrow"
- For simplicity when decoding, we'll assume that:
- The first word in the subsequence for sure has label $\mathrm{TO}\left(\mathrm{v}_{0}(\mathrm{TO})=1.0\right)$
- The word "tomorrow" for sure has label NR (P("tomorrow"|NR) = 1.0)

We have the following HMM
sample:

Example: Bigram HMM Tagger

The specific transition probabilities we are interested in are:

Example: Bigram HMM Tagger

- We can estimate the transition probabilities for $\mathrm{a}_{21}, \mathrm{a}_{23}, \mathrm{a}_{34}$, and a_{14} using frequency counts from the Brown Corpus
- $P\left(t_{i} \mid t_{i-1}\right)=\frac{c\left(t_{i-1} t_{i}\right)}{c\left(t_{i-1}\right)}$

Example: Bigram HMM Tagger

- We can estimate the transition probabilities for $\mathrm{a}_{21}, \mathrm{a}_{23}, \mathrm{a}_{34}$, and a_{14} using frequency counts from the Brown Corpus
- $P\left(t_{i} \mid t_{i-1}\right)=\frac{c\left(t_{i-1} t_{i}\right)}{c\left(t_{i-1}\right)}$
- So, P(NN|TO) = C(TO NN) / $C(T O)=0.00047$

Example: Bigram HMM Tagger

Superman	is	expected	to	fly	tomorrow				
NNP	VBZ	VBN	TO	VB	NR				
NNP	VBZ	VBN	TO	NN	NR				

- We can estimate the transition probabilities for $\mathrm{a}_{21}, \mathrm{a}_{23}, \mathrm{a}_{34}$, and a_{14} using frequency counts from the Brown Corpus
- $P\left(t_{i} \mid t_{i-1}\right)=\frac{c\left(t_{i-1} t_{i}\right)}{c\left(t_{i-1}\right)}$
- So, P(NN|TO) = C(TO NN) / $\mathrm{C}(\mathrm{TO})=0.00047$
- Likewise, P(VB|TO) = C(TO VB) $/ \mathrm{C}(\mathrm{TO})=0.83$

Example: Bigram HMM Tagger

- We can estimate the transition probabilities for $\mathrm{a}_{21}, \mathrm{a}_{23}, \mathrm{a}_{34}$, and a_{14} using frequency counts from the Brown Corpus
- $P\left(t_{i} \mid t_{i-1}\right)=\frac{c\left(t_{i-1} t_{i}\right)}{c\left(t_{i-1}\right)}$
- So, P(NN|TO) = C(TO NN) / $\mathrm{C}(\mathrm{TO})=0.00047$
- Likewise, P(VB|TO) = C(TO $\mathrm{VB}) / \mathrm{C}(\mathrm{TO})=0.83$
- $P(N R \mid V B)=C(V B N R) / C(V B)$ $=0.0027$

Example: Bigram HMM Tagger

Superman	is	expected	to	fly	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- We can estimate the transition probabilities for $\mathrm{a}_{21}, \mathrm{a}_{23}, \mathrm{a}_{34}$, and a_{14} using frequency counts from the Brown Corpus
- $P\left(t_{i} \mid t_{i-1}\right)=\frac{c\left(t_{i-1} t_{i}\right)}{c\left(t_{i-1}\right)}$
- So, P(NN|TO) = C(TO NN) / $C(T O)=0.00047$
- Likewise, $\mathrm{P}(\mathrm{VB} \mid \mathrm{TO})=\mathrm{C}(\mathrm{TO}$ $\mathrm{VB}) / \mathrm{C}(\mathrm{TO})=0.83$
- $\mathrm{P}(\mathrm{NR} \mid \mathrm{VB})=\mathrm{C}(\mathrm{VB}$ NR) / C(VB) = 0.0027
- Finally, $\mathrm{P}(\mathrm{NR} \mid \mathrm{NN})=\mathrm{C}(\mathrm{NN} N R) /$ $C(N N)=0.0012$

Example: Bigram HMM Tagger

Superman	is	expected	to	fly	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- We have our transition probabilities ...what now?
- Observation likelihoods!
- We can also estimate these using frequency counts from the Brown Corpus
- $P\left(w_{i} \mid t_{i}\right)=\frac{c\left(w_{i}, t_{i}\right)}{c\left(t_{i}\right)}$
- Since we're trying to decide the best tag for "fly," we need to compute both $\mathrm{P}($ fly $\mid \mathrm{VB})$ and P(fly|NN)

Example: Bigram HMM Tagger

Superman	is	expected	to	fly	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- We have our transition probabilities ...what now?
- Observation likelihoods!
- We can also estimate these using frequency counts from the Brown Corpus
- $P\left(w_{i} \mid t_{i}\right)=\frac{c\left(w_{i}, t_{i}\right)}{c\left(t_{i}\right)}$
- Since we're trying to decide the best tag for "fly," we need to compute both P (fly|VB) and P(fly|NN)
- $P($ fly \mid VB $)=C(f l y, ~ V B) / C(V B)=$ 0.00012

Example: Bigram HMM Tagger

Superman					
	is	expected	to	fly	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- We have our transition probabilities ...what now?
- Observation likelihoods!
- We can also estimate these using frequency counts from the Brown Corpus
- $P\left(w_{i} \mid t_{i}\right)=\frac{c\left(w_{i}, t_{i}\right)}{c\left(t_{i}\right)}$
- Since we're trying to decide the best tag for "fly", we need to compute both $P($ fly $\mid V B$) and P(fly|NN)
- $P($ fly $\mid \mathrm{VB})=\mathrm{C}(\mathrm{fly}, \mathrm{VB}) / \mathrm{C}(\mathrm{VB})=$ 0.00012
- $\left.\begin{array}{l}P(\text { fly } \mid \text { NN }) \\ 0.00057\end{array}\right)=C(f l y, N N) / C(N N)=$

Example: Bigram HMM Tagger

- Now, to decide how to tag "fly," we can consider our two possible sequences:
- to (TO) fly (VB) tomorrow (NR)
- to (TO) fly (NN) tomorrow (NR)
- We will select the tag that maximizes the probability:
- $P\left(\mathrm{t}_{\mathrm{i}} \mid T O\right) P\left(N R \mid \mathrm{t}_{\mathrm{i}}\right) P\left(f|y| \mathrm{t}_{\mathrm{i}}\right)$
- We determine that:
- P(VB|TO)P(NR|VB)P(fly|VB) = $0.83 * 0.0027 * 0.00012=$ 0.00000027
- $\mathrm{P}(\mathrm{NN} \mid \mathrm{TO}) \mathrm{P}(\mathrm{NR} \mid \mathrm{NN}) \mathrm{P}(\mathrm{fly} \mid \mathrm{NN})=$ 0.00047 * 0.0012 * $0.00057=$ 0.00000000032

Example: Bigram HMM Tagger

Superman	is	expected	to	fly	tomorrow
NNP	VBZ	VBN	TO	VB	NR
NNP	VBZ	VBN	TO	NN	NR

- Now, to decide how to tag "fly," we can consider our two possible sequences:
- to (TO) fly (VB) tomorrow (NR)
- to (TO) fly (NN) tomorrow (NR)
- We will select the tag that maximizes the probability:
- $P\left(t_{i} \mid T O\right) P\left(N R \mid t_{i}\right) P\left(f l y \mid t_{i}\right)$
- We determine that:
- P(VB|TO)P(NR|VB)P(fly|VB) = $0.83 * 0.0027 * 0.00012=$ 0.00000027
- Optimal sequence!
- $\mathrm{P}($ NN|TO $) \mathrm{P}($ NR|NN $) \mathrm{P}(\mathrm{fly} \mid \mathrm{NN})=$ 0.00047 * 0.0012 * $0.00057=$ 0.00000000032

Example: Bigram HMM Tagger

Superman	is	expected	to	fly	tomorrow					
NNP	VBZ	VBN	TO	VB	NR					
NNP	VBZ	VBN	TO	NN	NR					

- Visualized in a Viterbi trellis, this would look like:

Example: Bigram HMM Tagger

Neural Sequence Modeling

- Use a sequential or pretrained neural network architecture
- Recurrent neural networks
- Transformers
- Predict a label for each item in the input sequence
- If using a subword vocabulary, you will need to merge the labels predicted for all subwords in a word

eruTG！S23）＿Ulggh＾798！mn，233\＆4\＃hM！N＞＝glkgj：＂p［o\}\}

How can POS taggers handle unknown words？

－New words are continually added to language， so it is likely that a POS tagger will encounter words not found in its training corpus
－Easy baseline approach：Assume that unknown words are nouns
－More sophisticated approach：Assume that unknown words have a probability distribution similar to other words occurring only once in the training corpus， and make an（informed）random choice
－Even more sophisticated approach：Use morphological information to choose the POS tag（for example，words ending with＂ed＂ tend to be tagged VBN）

万（yus4シ＿）＂skdf＊M＂ 5 Nb\＃vuh45～xnz87＂zdg＠LK4＞\％98P？．．．JHYg｜＂se
つ3！3r／vfti\＃o3\＆8．bLP2＠y＾h－0923｜＂；iij＊ht）yiu\＃oH\＆g569＝sDER－
－i．eruT\＃GS＊3）＿Ulg＾gh＾798mn，2～33\％4hg～lkgj：＂p［o\}\}@o! o..) vovuh45～xnz87＂zdg\％LK4\＆＠98P？．．．JHYg｜＂ser32Z＂～54drt\＄ 2ऽ 45～xnz＾87＂zdg＊L\％K4＞98P？．．．JHYg｜＾＂ser32Z～～54d\＆ \％8．bL＠Pyh－0923｜＂；ojht）＾yiu\＃oHg\＆569＝sD～ER～Tg＠＾ －｀＿Ulı＾gh＾798mn，2334hglkgj：＂p［o\}\}oo..yg\&Z\# X\&! qo>

ᄀ \＆5by－sDERTg＾tg9＊\＆ru～yf\＄\％＾＠1wsa\％swi9＾34＜．？TYHb，7
yg\＆Z\＃X\＆＊q！o＞6KT\＄sjf＜＜riguTR！XH＇15\＃\＄fgkd\＃u（guj4
3＾2Z＇～$\sim 54 \mathrm{drt} \$ \%$ h．＜ut（jRus）72＋joA＠o＾o7\＆｜\｛48tg｜\％\}6eSW!_s!

－1 RT\＄gt＾g9＊\＆！ruyf\＄\％＾＠1wsas＜wi9＾34＜．？TYHb，76＜by7ko＾\％＊k
\cdot ，＊g\＆Z\＃X\＆qo＞6d＞kjPoiu．＿ioOR！E＠Qds＝Sask，jlk＜ut\＆iud～zxs23！3r
＇9＊\＆ruyf\＄\％＾＠1l［S w\＆\％s＾s\＃wi934＜．？TY\＃Hb，76＜bkoKJ～d\％＊klj． ／\＃g\＆\％Z＠\＆qo＞6K7 T\＄sjf＜rigu！TR＠XH＇15\＃\＄fg！kd1u（gu＊j49＿）＂skc
．．t\＄\％h．d＞kjPo＊iu．＿ioOR～E\＄Qds＝Sask，jlkhiud～zxs＇23～3r／vfti\＃o38
u．．\＄\％＾＠1wsas～wi934＜．？TY！Hb，76＜by7k＊od\％＊klj．eruT\＃GS23）＿Ul＊gg
lyuTR\＄XH＇15\＃\＄fgkd\＃u（gu\％j49＿）＂skdfNb\＄vuh45～xnz87＂d67g\％LK4～
－ $\mathrm{tg} \mid 36 \mathrm{eSW}$ ！s sTj：YA＋Fd／dsf\％\＆66！\＃？hh＾＊88＠45～xnz87＂zdgLK4＞9：
＇•小＇i＇h～iud～zxs\＄233r／vfti\＃o328．bLPyh－0923｜＂；oijh＾t）yiu\＃＊oHg\＆ 569
！7kod\％＊klj．eruT\＃GS23）＿Ulggh＾798mn，2337 4h＾glk\＆gj：＂p［o\}o, $3 \mid$＂；oijht）8＊yiu\＃oHg569＝s～DE\＆＠R～Tgtg9＊\＆ruyf\＄\％＾＠1wsa＠＾ ＊mn，23\％34！h\％glkgj：＂p［0\}\}o^ o..yg@\&Z\# X\&qo>6\%K^\$sjf<<ric － 7498 P ？．．JHYg｜＂se＠r32Z＇～54drt\＄\％h．＜ut（jRus） $72+$ joAoo7｜\｛2 ＇4＞98P？．．．JH\％g｜＂ser＾32Z～～${ }^{\prime} 54 \mathrm{drt} \$ \%$ h．d＞kjPoiu．ioOR\＆E！Qc

Evaluation Metrics for POS Taggers

- Common metrics for POS taggers are:
- Accuracy
- Precision
- Recall
- F1

Comparison

- The scores computed for these metrics should be compared to alternative POS tagging methods, to place the values in context
- Is this a good accuracy, or just okay?
- It's good to compare to both a lower-bound baseline and an upper-bound ceiling
- Baseline: What should your POS tagger definitely perform better than?
- Most Frequent Class
- Ceiling: What is the highest possible value for this task?
- Human Agreement

What factors can impact performance?

- Many factors can lead to your results being higher or lower than expected!
- Some common factors:
- The size of the training dataset
- The specific characteristics of your tag set
- The difference between your training and test corpora
- The number of unknown words in your test corpus

Summary: Part-ofSpeech Tagging

POS tagging is the process of automatically assigning grammatical word classes (parts of speech) to individual tokens

The most common POS tagset is the Penn Treebank tagset

Ambiguity is common in natural language, and is a major issue that POS taggers must address

Although POS taggers can be designed using many approaches, statistical (and neural) models are most common

